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We have carried out extensive NPT molecular-dynamics simulation studies of binary Lennard-Jones mix-
tures to calculate directly the bridge function at state points lying in a very narrow single fluid phase region
between the vapor-liquid and solid-liquid coexistence lines �Lamm and Hall, Fluid Phase Equilib. 182, 37
�2001�; 194–197, 197 �2002��. By varying the density close to the liquid-vapor coexistence line, significant
deviations are observed at intermediate distances between the simulated bridge function and two widely used
approximate closures in the integral equation theory of liquids, viz. the hybrid mean spherical approximation
and the Duh-Henderson closures. The overall qualitative agreement remains the same with small variation in
temperature that brings the system closer to either the liquid-vapor or liquid-solid coexistence curve. We also
report a comparison of the direct and indirect correlation functions obtained from our simulation studies as well
as from the integral equation theory of liquids. Our results emphasize the need for developing new closures
applicable to binary fluid mixtures over a wide range of thermodynamic parameters.
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I. INTRODUCTION

The binary Lennard-Jones �LJ� fluids have been widely
investigated as model systems to study the structure and dy-
namics of multicomponent fluids �1–9�. The equilibrium
structure of binary LJ fluids �10–12� as well as that of binary
LJ solids �13,14� has been studied in detail. A variety of
methods ranging from Gibbs ensemble Monte Carlo simula-
tions �15� to integral equation theories of liquids �16,17� and
density-functional theories �18� have been used to construct
the phase diagram in binary LJ mixtures. This system has
also been used to study interfacial phenomena such as wet-
ting at the liquid-vapor interface �19,20� or surface tension at
the interfaces between demixing liquids �21–23�. Molecular-
dynamics simulation of the inherent structure of the binary
LJ fluid in phase-separated binary LJ mixture �24� shows
temporal evolution of microscopic domains during liquid-
liquid phase separation. Recently, attempts have been made
to rationalize the properties of such mixtures in bulk and in
small clusters in terms of the underlying rugged energy land-
scape �25,26�. Importantly, much of our present understand-
ing of relaxation dynamics in glass �27–29� and supercooled
liquids �30–32� has been derived from studies on binary LJ
mixtures.

In view of its wide range of applications, it often becomes
necessary to have a detailed insight into the equilibrium
structure �or equivalently, the equilibrium correlations�
present in binary LJ fluids. These correlations may be ob-
tained using molecular dynamics or Monte Carlo simulation
studies �33,34�. On the other hand, extension of integral
equation theories �IET� of liquids to binary mixtures is found
to be computationally efficient, especially when investigating
properties over a wide range of thermodynamic parameters
�16,17�. The goal of the present paper is to investigate the
static structure of binary Lennard-Jones mixture with varia-

tions in temperature T and pressure P using molecular-
dynamics simulations. We shall focus here on the generation
of key inputs to the IET of binary fluid mixtures.

Within the framework of IET, the total pair correlation
between particles of type i and j separated by a distance r in
a binary fluid mixture is given by the Ornstein-Zernike �OZ�
equation �1�

hij�r� = cij�r� + �0� dr�cij��r − r���hij�r�� , �1�

where cij�r� represents the distance-dependent direct correla-
tion function between these particles. �0 is the average num-
ber density of the fluid. hij�r�, on the other hand, is related to
the interparticle pair potential �ij�r� by the following exact
relation �1�:

hij�r� + 1 = exp�− ��ij�r� + �ij�r� + Bij�r�� , �2�

where �ij�r�=hij�r�−cij�r� is known as the indirect correla-
tion function between particles of type i and j. As usual, �
= �kBT�−1 with kB and T as the Boltzmann constant and ab-
solute temperature, respectively. In Eq. �2�, Bij�r� represents
the bridge function that cannot be evaluated analytically.
Therefore, semiempirical approximations for Bij�r� are intro-
duced to close the numerical solution of Eqs. �1� and �2�.

The accuracy of an approximate closure used is generally
tested by comparing the correlation hij�r� predicted by IET to
that obtained from simulation �35,36�. However, a direct cal-
culation of the bridge function and its dependence on the
thermodynamic parameters are less frequently investigated
�37,38�. In this paper, our aim is to extract Bij�r� directly
from simulation and compare it to two of the most widely
used closures for binary LJ mixtures. In particular, we shall
discuss the variation of correlation between unlike species 1
and 2 in terms of B12�r� in a homogeneous liquid phase near
the liquid-vapor coexistence curve.

The first approximate closure being studied here is known
as the hybrid mean spherical approximation �HMSA�. This is
based on a partitioning of the interaction potential, �12�r�,
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between an unlike pair of particles into a soft core repulsive
part, �R�r�, and an attractive part, �A�r�. B12�r� is then given
by �35�

B12�r� = ln�1 +
exp�f�r���12�r� − ��A�r��	 − 1

f�r� 
 − �12�r�

+ �A�r� �3�

with a Roger-Young “switching” function f�r�=1
−exp�−�r�. The parameter � can be varied to impose ther-
modynamic consistency of the solution. We shall also con-
sider the Duh-Henderson �DH� closure �36� that utilizes a
semiphenomenological density dependence in the attractive
part of the potential, �A�r� given by �39�

�A�r� = − 4�12��12

r
�6

exp�−
1

�*��12

r
�6�*
 . �4�

Here, �*=�0�22
3 is the reduced density of the liquid scaled in

terms of particle diameter �22 of type 2. As explained below,
�12 and �12 are the cross-species LJ parameters. It is also
assumed that B12�r�B12�s�, where s12�r�=�12�r�−��A�r� is
the indirect correlation function renormalized in terms of
�A�r�. The resultant expression for the bridge function, free
from any adjustable parameter, is given by

B12�s� =
− s12

2

2�1 + �5s12 + 11

7s12 + 9
�s12
 , s12 � 0,

=−
1

2
s12

2 , s12 	 0. �5�

Applicability of both of these closures to calculate structure,
thermodynamics, and phase equilibria in one- and multicom-
ponent LJ fluids having moderate to high densities is well
documented �16,36�. The assumption of a local dependence
of B on � plays a key role in the calculation of properties
such as chemical potential �40� that is in turn used in pre-
dicting phase equilibria �16,17�.

In order to evaluate the bridge function using computer
simulation studies, the pair potential, �ij�r� �i=1,2�, in bi-
nary LJ mixture is generally modeled as

�ij�r� = 4�ij���ij

r
�12

− ��ij

r
�6
 , �6�

where �ij is the attractive well depth and �ij is the LJ diam-
eter. The cross-species interaction parameters ��12 and �12�
may be determined, for example, by the Lorentz-Berthelot
combination rules �41�

�12 =
1

2
��11 + �22� ,

�12 = 
12
��11�22. �7�

As is evident from the above equation, the binary interaction
parameter 
12 reflects the deviation of unlike-pair interaction
from the geometric mean of the like pair interactions. Re-

cently, a detailed study was carried out on the complete
phase diagram of binary LJ mixtures using Monte Carlo
simulation and Gibbs-Duhem integration techniques �42� to
understand the effect of 
12 on fluid phase behavior �42�. It
was found that for 
12=1.0, �11/�22=0.45, and �11/�22
=0.85, a completely miscible liquid phase exists in a narrow
region between the solid-liquid and liquid-vapor coexistence
curves. However, this phase disappears for 
12=0.9 where
the above two coexistence regions interfere. In this paper, we
shall focus on the applicability of HMSA and DH closures to
binary LJ fluids in the narrow liquid phase at state points
lying close to the liquid-vapor coexistence line.

It should be noted that both the closures mentioned above
have originally been proposed to explain the properties of
high-density, homogeneous single-component fluids �1� and
extended later to describe correlations in homogeneous mix-
tures. However, in a binary mixture, an interchange of posi-
tion of two particles, belonging to two different species, does
not lead to an identical picture of phase space as it does if
two identical particles are exchanged. Therefore, a careful
analysis of the functional dependence of B12�r�, e.g., on
�12�r�, may be needed especially at regions close to phase
coexistence. Recently, Fantoni and Pastore �43� have carried
out an extensive Monte Carlo simulation study of the closure
relations in hard-sphere fluid mixture where, depending on
the system studied, the local dependence of the bridge func-
tion on � is found to break down. Using a constant pressure
integral equation theory to calculate phase diagrams �17�, it
has also been demonstrated that the accuracy of the predicted
phase diagram in binary LJ fluids depends critically on the
closure used.

With a view to estimating the accuracy of these approxi-
mate closures in the predictions of structural and thermody-
namic properties, we have further carried out comparisons of
our simulation results to approximate integral equation theo-
ries at the level of direct and indirect correlation functions, as
well as the pair distribution function. Our results highlight
the well-known accuracy of these closures in predicting the
radial distribution function. The direct and indirect correla-
tions are, however, not as accurately reproduced. As a con-
sequence, it is found that quantities, such as chemical poten-
tials, predicted using the indirect correlation functions
derived from simulations as well as integral equation theo-
ries, exhibit significant deviations. These observations em-
phasize the need for developing new, improved closure rela-
tions for model systems. Our investigation is thus expected
to be useful not only in assessing the applicability of these
approximate closures over a wide range of thermodynamic
parameters, but also in the context of calculation of fluid
phase diagrams �17�.

The rest of the paper is organized as follows. In Sec. II,
we outline the method adopted to extract the bridge function
from molecular-dynamics simulation of a binary LJ mixture
whose phase diagram is completely known �42�. The results
are presented and discussed in Sec. III, and Sec. IV summa-
rizes the conclusions.

II. METHODOLOGY

We shall present here an overview of the method adopted
to extract the bridge function from large-scale molecular-
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dynamics simulation of binary LJ fluids. Details of this
method, applied to one-component LJ fluid, are available
elsewhere �38�.

In the first step, we calculate the unlike pair radial distri-
bution function, g12�r�, by an extensive sampling of equili-
brated trajectories of molecular-dynamics simulation studies.
We then Fourier transform g12�r� to obtain the structure fac-
tor, S12�k� �1,37,44�. The next step involves calculation of
�̃12�k�, the indirect correlation function in the Fourier space,
using the following expression:

�̃12�k� =
�S12�k� − 1�2

�0S12�k�
. �8�

Fourier inversion of �̃12�k� yields �12�r� that is finally used to
calculate the bridge function as

B12�r� = ln g12�r� + ��12�r� − �12�r� . �9�

Note that �12�r� is a smoothly decaying correlation function
that goes to zero at large distances. The decay of �12�r� at
large r may also be adjusted by shifting of the pair potential
�33�. Therefore, for an accurate estimation of B12�r�, one
needs to employ a large enough simulation box whereby
g12�r� effectively goes to its limiting value of unity well
within the maximum distance probed. However, it is not pos-
sible to estimate B12�r� within the core region �that is, r
	�12� using Eq. �9� as g12�r� is zero in this range. Alterna-
tively, the bridge function may be evaluated from the cavity
correlation function y12�r� as �1,16�

B12�r� = ln y12�r� − �12�r� . �10�

We have estimated y12�r� using Henderson’s equation �45�,
which is known to be accurate at small r �37,43�. In this
method, for a binary mixture comprised of N1 particles of
type 1 and N2 particles of type 2 present in a volume V, the
unlike cavity function between particle 1 of type 1 and par-
ticle 1 of type 2 at a distance r1112

may be obtained from the
following canonical average �43,45�:

y12�r1112
� =

Vz1

N1
�exp�− ����N1,N2,V,T,

where

� = �
i2�1

N2

�12�r11i2
� + �

i1�1

N1+1

�11�r11i1
� . �11�

The summation � and hence the average are evaluated by
placing a hypothetical test particle �of type 1� at small dis-
tances over a grid near the particle 1 of type 1 and then near
the particle 1 of type 2. In the above equation, z1
=exp��1� /�3 is the activity of specie 1 expressed in terms
of its chemical potential 1 and thermal de Broglie wave-
length, �. Thus the prefactor reduces to Vz1 /N=exp��1

ex�
and is related to the excess chemical potential, 1

ex, of the
specie 1. Note that the contribution of the prefactor to the
average may be calculated from the limiting behavior of the
cavity function �38,43�. Although computation of this prob-
ability is practically free in an NVT Monte Carlo simulation,
it can also be evaluated without much computational cost

from the equilibrium trajectories generated in MD simula-
tion.

The indirect correlation function thus extracted from the
molecular-dynamics simulation studies has been further used
to calculate the chemical potential of the two species present
in the mixture. Here, we have adopted the well-known star
function method �40� whereby the chemical potential is ex-
pressed as

�i
ex = �

k=1

2

�k� dr���ik�r� + Bik�r� − hik�r� +
1

2
hik�r��ik�r�

+ hik�r�Bik�r� − Sik�r�
 . �12�

Under the assumption of a unique functionality B=B���, the
star function may be evaluated from the following expres-
sion:

Sik�r� =
hik�r�
sik�r� �0

sik

d��Bik���� . �13�

The renormalized indirect correlation function, sik�r� �i ,k
=1,2�, may be obtained either from simulations or from the
numerical solutions of OZ equation with a suitable closure.

III. RESULTS AND DISCUSSION

We have performed an extensive NPT molecular-
dynamics simulation study of the equilibrium correlations
present in a completely miscible liquid phase lying in the
narrow intervening region between the liquid-vapor and
solid-liquid coexistence lines as observed in the simulated
phase diagram of a binary LJ mixture �42�. For this purpose,
we have used the following parameters to model the binary
interaction potential: diameter ratio �11/�22=0.85, well
depth ratio �11/�22=0.45, and binary interaction parameter

12=1.0. The simulations were carried out with a total of
5000 particles at three typical state points lying near the
liquid-vapor coexistence curve to obtain the bridge function
for this liquid phase. The details of the state points studied
are summarized in Table I. In all the cases studied here,
length is scaled by �22, and the diameter of particles of type
2 and energy by the LJ energy parameter �22. The thermody-
namic state of the system is characterized accordingly by the
reduced density, �*=�0�22

3 , and the reduced temperature, T*

=kBT /�22, along with the variation in molefraction x2.

TABLE I. The three state points studied using NPT molecular-
dynamics simulation characterized by reduced temperature, T*

=kBT /�22, reduced pressure, P*= P�22
3 /�22, and molefraction x2 of

particles of type 2 having diameter �22 and LJ-interaction parameter
�22. For details, see text.

State Pressure, P* Temperature, T* Molefraction, x2

I 0.0366 1.21 0.55

II 0.0366 1.25 0.60

III 0.0366 1.29 0.65
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Choosing the mass m, diameter �22, and energy parameter
�22 to be equal to those characteristic of Ar, time t is found to
be scaled by �=�m�22

2 /�22�2 ps.
It is important to note that the cavity correlation function

y12�r� can be obtained exactly from NVT MD simulations by
using Eq. �11�. The approximate cavity correlations derived
from our NPT simulation studies have been checked for ac-
curacy against the corresponding exact NVT results and we
get identical estimates of y12�r� from both simulations. The
simulation package DL�POLY �46� has been used to generate
the trajectories in the NPT ensemble using a Nosé-Hoover
thermostat �47�. Efficient fast Fourier transform routines
have been used to calculate S12�k� directly from g12�r�. �12�r�
is subsequently calculated by Fourier inversion of S12�k�. It
is well known that estimates of y12�r� become statistically
unreliable at distances r��12, and hence B12�r� obtained di-
rectly from MD is used to represent B12�r� at larger dis-
tances. B12�r� within the core derived from Henderson’s
method is found to extend smoothly and continuously to
B12�r� outside the core calculated from the MD simulation.
To facilitate a direct comparison to the simulated bridge
function, the approximate functional forms of B12�r� as in
HMSA or DH have been evaluated using the simulated
�12�r� as input.

In Fig. 1, we present the indirect correlation function
�12�r� and the unlike cavity correlation function y12�r� ob-
tained from simulation of the binary LJ fluid at the state
point I. The resultant variation of B12�r� is shown in Fig. 2,
where B12�r� obtained from NPT simulation has been com-
pared to HMSA and DH closures. It is found that while the
DH closure reproduces the bridge function quantitatively in-
side the core, both the closures significantly underestimate
B12�r� at the distances r12��22. The overall quality of agree-
ment remains the same as we go from state I to state II
�shown in Figs. 3 and 4� and state III �Figs. 5 and 6�. It
should also be noted that both the closures predict a singular
lack of structure in B12�r� at distances r��22 while the simu-

lation results indicate a slower decay with small oscillations.
Therefore, any attempt toward the improvement of these clo-
sure relations would warrant a better modeling at intermedi-
ate distances. The Duh-Henderson closure appears to provide
a marginally better estimate of B12�r� in comparison to
HMSA, especially within the core.

We have also investigated the presence of anisotropy, if
any, in the liquid phase being studied here. For this purpose,
we have calculated the radial distribution function,
g12�r ,� ,��, by sampling the unlike pair of particles at differ-
ent pair separations r� with varying orientations �� ,�� of r�. In
Fig. 7, we show the typical behavior of g�r ,� ,�� as a func-
tion of �r ,�� for �=0 in a one-component LJ fluid in a high-
density, homogeneous state. Similar to its one-component
analogue, the binary LJ fluid in the narrow region under
investigation also shows a completely isotropic distribution
of the neighboring particles both in first- and second-
neighbor shells. This has been highlighted in Fig. 8.

We next present the “Duh-Henderson” plot �36,38,43� and
the results are shown in Fig. 9 to understand the dependence

FIG. 1. The indirect correlation function, �12�r�, and log of the
cavity correlation function, ln y12�r�, in binary LJ fluid obtained
from NPT molecular-dynamics studies at T*=1.21, P*=0.0366, and
x2=0.55 �state I of Table I�. ln y12�r� calculated using Henderson’s
method �45� is shown using triangles, and �12�r� obtained from
Fourier inversion of structure factor is represented �.

FIG. 2. Comparison of simulated bridge function �NPT, solid
line� of binary LJ fluid in state I with the approximate IET closures,
DH �open circle�, and HMSA ���. The inset highlights stronger
correlation predicted by NPT MD in comparison to the closures at
intermediate distances near the core.

FIG. 3. The indirect correlation function, �12�r� ���, and log of
the cavity correlation function, ln y12�r� �triangle�, in binary LJ fluid
at T*=1.25, P*=0.0366, and x2=0.6 �state II of Table I�.
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of the bridge function B12�r� on the indirect correlation func-
tion, �12�r�. It is found that similar to the predictions of both
HMSA and DH closures, the bridge function shows a unique
local dependence on �12�r� for higher values of the indirect
correlation function. However, a significant deviation is ob-
served for small values of �12�r� at all the three state points.

In order to compare the effect of variation of temperature
on B12�r�, we show in Fig. 10 the bridge functions extracted
from molecular-dynamics simulation of a binary LJ mixture
at temperatures T*=1.24, 1.21, and 1.17, respectively, with
all other parameters remaining the same as those of state I
�see Table I�. It should be noted that while the state with
T*=1.24 lies in close proximity to the liquid-vapor coexist-
ence curve, that with T*=1.17 is close to the liquid-solid
coexistence line. It is found that as expected, lowering of
temperature increases the correlation at the intermediate dis-
tances followed by small but slow oscillations setting in at
larger distances. There is no other significant change.

As expected, at the level of radial distribution function
g�r�, both of the closures being discussed here produce a
quantitative agreement with the simulated g�r� that has not

been shown here. However, our ultimate goal is to predict
properties such as the chemical potential. Therefore, it may
be more useful to know the accuracy of these closure rela-
tions in providing the direct or indirect correlation functions.
For this purpose, we have obtained these correlation func-
tions by solving Eq. �1� in conjunction with HMSA as the
approximate closure employing Gillan’s algorithm �48�. In
Fig. 11, we present a comparison of the indirect correlation
function, �12�r�, for binary LJ fluid thus obtained with that
calculated from our MD simulation studies. It is clearly seen
that both simulation and HMSA predict a qualitatively simi-
lar, smooth decay of �12�r� with HMS markedly underesti-
mating �12�r� at small distances. In Fig. 12, we present a
comparison of the direct correlation function, c12�r�, for bi-
nary LJ fluid obtained by MD simulation and by solving the
IET for HMSA. Interestingly, it is found that the use of an
approximate closure leads to an overestimation of the direct
correlation function in the core region. At the intermediate
distances, as expected from our studies on the bridge func-

FIG. 4. Comparison of simulated bridge function �from NPT
MD, solid line� in binary LJ fluid at state II with IET closures
HMSA ��� and DH �open circle�. The inset as before highlights
stronger correlation predicted by NPT MD at distances r��22.

FIG. 5. The indirect correlation function, �12�r� ���, and log of
the cavity correlation function, ln y12�r� �triangle�, in binary LJ fluid
at T*=1.29, P*=0.0366, and x2=0.65 �state III of Table I�.

FIG. 6. Comparison of simulated bridge function �NPT, solid
line� of binary LJ fluid in state III with the approximate IET clo-
sures, DH �open circle�, and HMSA ���. As in Figs. 2 and 4 the
inset highlights stronger correlation predicted by NPT MD at dis-
tances close to r��22.

FIG. 7. Isotropic distribution of the pair correlation function,
g�r ,� ,��, in one-component LJ fluid in a high-density homoge-
neous fluid phase with T*=1.04, �*=�0�3=0.8442 having 5000 par-
ticles. For the sake of simplicity, we show the variation of g as a
function of r and � keeping �=0.
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tion, the extent of correlation predicted by the IET is less
than that obtained from the simulation.

An immediate consequence of these observed deviations
on the calculated thermodynamic properties has been pre-
sented in Table II. Here, we have calculated the nonideal
contribution to the chemical potential of both species 1 and 2
using Lee’s star function method �40�. The evaluations are
carried out starting with �ij�r� derived from both MD simu-
lations at the three state points mentioned above and also
from the solution of the OZ equation in conjunction with the
HMSA closure. It is found that the estimate of �i

ex obtained
from HMSA is higher than that observed in our simulation
studies.

IV. CONCLUSION

In this paper, we have presented a molecular-dynamics
study of the bridge function in a completely miscible liquid

phase near the liquid-vapor coexistence curve in binary LJ
fluid mixtures. The results have been compared to two of the
most widely used approximate closures of the integral equa-
tion theories of liquids. It is found that both HMSA and DH
closures provide a qualitatively accurate description of the
bridge function especially within the core. However, correla-
tions at contact distances are substantially underestimated.
Both of the closures predict practically structureless variation
of the bridge function outside the core. The overall accuracy
of the closures may be primarily attributed to the homoge-
neous and isotropic distribution of the fluid particles. It may
be recalled that in liquids at supercritical states near the criti-

FIG. 8. �Color online� Isotropic distribution of the unlike pair
correlation function, g12�r ,� ,��, in a completely miscible liquid
phase of a binary LJ mixture at the state III of Table I. As in Fig. 7,
we show the variation of g as a function of r and � keeping �=0.

FIG. 9. The Duh-Henderson plot of the bridge function, B12�s�,
where it is plotted as a function of the renormalized indirect corre-
lation function, s12�r�, of binary Lennard-Jones fluid at the three
state points I, II, and III �see Table I�. The solid line represents the
results of NPT MD simulation. The circles and � correspond to the
prediction of DH and HMSA closures, respectively. In the case of
HMSA, the bridge function has been plotted as a function of �12�r�
instead of s12�r�.

FIG. 10. Comparison of simulated bridge function B12�r� �NPT
MD� of binary LJ fluid at three different temperature for x2=0.55
and P*=0.0366. As the temperature changes from T*=1.24 �solid
line� to T*=1.21 �open squares� and finally to T*=1.17 �triangles�,
the correlations at intermediate distances progressively increase.
The inset highlights this increment with a decrease in temperature
that takes the system along a constant pressure-constant composi-
tion line from near the liquid-vapor coexistence line �T*=1.24�
close to the liquid-solid coexistence line �T*=1.17�.

FIG. 11. Comparison of simulated indirect correlation function
�12�r� �NPT MD� of binary LJ fluid with the results obtained by
solving the OZ equation with HMSA closure at states I, II, and III
of Table I. The simulated values are shown using lines connecting
solid squares �state I�, solid circles �state II�, and solid triangles
�state III�. The variation of �12�r� predicted by HMSA is repre-
sented using open squares, circles, and triangles at states I, II, and
III, respectively.
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cal point �38�, an anomalous positive segment is observed
for the bridge function in the core possibly as a result of
local-density augmentation. No such deviation is observed
here. The Duh-Henderson plots presented here seem to indi-
cate a nontrivial dependence of the bridge function on the
indirect correlation function beyond the widely used local
approximation. We have also investigated the effect of tem-
perature variation for a fixed composition that brings the
state point closer to the neighboring coexistence lines. It
would have been interesting to see if the onset of a phase
transition gets reflected in the structure of the bridge function
as a result of changes in the binary interaction parameter 
12.
Variation of 
12 from 1.0 to 0.9 leads to a coalescence of the
liquid-vapor and liquid-solid coexistence regions �42�. Our
preliminary investigations at 
12=0.95 �keeping all other pa-
rameters the same� do not seem to reveal any marked change
in the overall behavior of B12�r�.

In view of the results presented here, it should be realized
that the deviations observed may not induce any significant
difference between the simulated radial distribution function
and that predicted by using these closures in IET. However, it
is the direct correlation function or the structure factor, rather
than the radial distribution function, that governs the effect
of equilibrium correlations, for example, on system dynam-
ics �1�. We have reported in this study how the use of an
approximate closure like HMSA leads to an underestimation

of ��r� and an overestimation of c�r� at small distances. It is
also shown how these can be correlated to the observation of
marginally larger values of chemical potential. Therefore,
one must employ the utmost caution in choosing an approxi-
mate closure especially if the application needs either the
direct or the indirect correlation function as an input. It has
already been shown �17� that use of thermodynamically con-
sistent and state-sensitive closures may induce significant
improvements in estimating chemical potentials. Any such
improvement may help in providing quantitative descriptions
of phenomena determined by chemical potential such as
phase equilibria and chemical reaction equilibrium. The use
of a density-dependent attractive part of the potential seems
to hold a key to the wide applicability of the Duh-Henderson
closure. For accurate prediction of phase transitions and criti-
cal behavior of simple fluids and their mixtures, one may
also use, for instance, the self-consistent Ornstein-Zernike
approximation �SCOZA� �49� that provides an accurate esti-
mate of the equilibrium correlations near the liquid-vapor
coexistence curve. It will further be of wide interest to inves-
tigate how such different approaches may be extended to
treat inhomogeneous fluids �50� in reference to interfacial
phenomena such as surface wetting.
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